Skip to main content Skip to navigation
Enlarged Coronavirus cells on a dark backdrop.

COVID-19 Research

 

 

Overview
Down Arrow

Overview

While the COVID-19 global pandemic continues to evolve, BD Biosciences stands strong to support critical scientific research to better understand and ultimately battle the COVID-19 outbreak. Now more than ever, BD Biosciences is committed to being your scientific partner of choice and providing you with the tools and support required to enable your COVID-19 research. We provide a comprehensive portfolio of research tools to facilitate discovery in the following areas of COVID-19 research: 

 

  • Viral immune response 

  • Cytokine analysis 

  • Vaccine research 

  • Biomarkers and therapeutics 

 
performance1

Navigate this site to learn more about BD Biosciences’ solutions and their applications in COVID-19 research. All products mentioned on these pages are for research use only, except for the BD FACSLyric™ Flow Cytometer, which is a combined-function flow cytometer for both IVD and research use. Its use in COVID-19 is for research purposes only.

 

Icons showing Coronavirus, shield, lungs, needles and prescriptions.

For information on the comprehensive COVID-19 response efforts from BD—including product availability, status of BD operations and business continuity planning—visit bd.com/COVID-19.  

Biology of SARS-CoV-2

COVID-19, or coronavirus disease 2019, is caused by the SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2). SARS-CoV-2 is a novel virus belonging to the coronavirus family, which includes strains responsible for the common cold as well as the viruses responsible for SARS and MERS. It is genetically related to the coronavirus responsible for the SARS outbreak in 2003.

 

SARS-CoV-2 is an enveloped single-stranded RNA virus of the Coronaviridae family. Its genome encodes 29 proteins involved in the infection, replication and virion assembly process. Key structural proteins of the virus include the spike (S) glycoprotein, the envelope (E) protein and the matrix (M) transmembrane glycoprotein.1 Initial infection is believed to take place in nasal epithelial cells, which are rich in ACE-2 receptors.

 
Steps of Coronovirus multiplication in a cell.
performance1

Adapted from Callaway E, 2020.2

Viral entry also depends on cathepsin B/L activity and protease activity of TMPRSS2. These receptors are found distributed throughout epithelial cells of the respiratory and gastrointestinal tract. The S protein from SARS-CoV-2 enables cellular receptor binding, membrane fusion and hemagglutinin activity. The S protein contains a receptor binding domain (RBD), which is the most variable region of its genome. The RBD binds the human angiotensin-converting enzyme 2 (ACE-2) initiating viral uptake in human cells by endocytosis. The E and M proteins collaborate for viral envelope formation.1

 

Before entering a cell, SARS-CoV-2 needs to recognize and bind surface receptors such as ACE-2. From there, a cascade of sequential events take place to ensure successful viral infection and replication.2 The life cycle of SARS-CoV-2 includes the following: 

 

  • SARS-CoV-2 binds to ACE-2 receptor

  • SARS-CoV-2 is endocytosed

  • SARS-CoV-2 fuses with a vesicle and viral RNA is released

  • SARS-CoV-2 RNA is translated into proteins 

  • New SARS-CoV-2 virions are assembled

  • New SARS-CoV-2 virions are released

Types of immune responses to SARS-CoV-2

SARS-CoV-2 infection induces a multistep response from the host immune system:

 

  • First-line defense by the innate immune system with natural killer (NK) cells, macrophage activation and multinucleated giant cell formation

  • Proinflammatory cytokine and chemokine activation

  • Antigen presenting cells engulf and process SARS-CoV-2 antigens

  • T helper cells are activated by SARS-CoV-2 antigen 

  • Cytotoxic T cells and B cells are cross activated by T helper cells 

  • Immunological memory is formed for SARS-CoV-2 

 

When the immune system fails to control its immune defense response properly, severe forms of COVID-19 develop. 

 

 Three major phases have been described in COVID-19 disease:

 

  • Viremia phase

  • Acute (pneumonia) phase

  • Recovery phase

 

Severe forms of SARS-CoV-2 induced COVID-19 are associated with increased release of pro-inflammatory cytokines (e.g., IL-6, Il-2, GM-CSF), also known as cytokine storm syndrome, hypercytokinemia or cytokine release syndrome, along with weak production of type I interferons (IFN-Is).3, 4

References

  1. Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-11734. doi:10.1073/pnas.2003138117 

  2. Callaway E. The race for coronavirus vaccines. Nature. 2020;580(7805):576-577. doi: 10.1038/d41586-020-01221-y

  3. Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020;16(7):e1008737. doi:10.1371/journal.ppat.1008737

  4. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. doi:10.1016/j.cell.2020.04.026
Scientific Resources
Down Arrow
Reagent Solutions
Down Arrow
Instrument Solutions
Down Arrow
Data Analysis
Down Arrow
COVID-19 Support
Down Arrow

Class 1 Laser Product.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.

Alexa Fluor is a trademark of Life Technologies Corporation. 

Cy is a trademark of Global Life Sciences Solutions Germany GmbH or an affiliate doing business as Cytiva. 

FaceTime is a trademark of Apple Inc. Microsoft Teams is a trademark of Microsoft Corporation.