Skip to main content Skip to navigation

Overview
Down Arrow

 

 

Human immunodeficiency virus (HIV) targets the immune system, and if untreated, causes acquired immune deficiency syndrome (AIDS). Around the world, 38 million individuals are currently living with HIV. Of those, 1.7 million people were newly infected in 2019 and 690,000 have died of AIDS-related illnesses.1 Two main types of HIV exist—HIV-1 and HIV-2. They are very similar structurally and both ultimately lead to AIDS. Globally, HIV-1 is more widespread while HIV-2 is restricted to Western and Central Africa. HIV-2 is less virulent with a longer progression into AIDS but induces diseases of the central nervous system more frequently.

 

 

What are the stages of HIV infection?

Assuming no treatment is taken, there are three phases in the progression of HIV infection:2

 

  • Acute — usually occurs about 3 weeks post-exposure. During this phase, the virus replicates rapidly in CD4 T-cells, which is indicated by high viral load and high rate of CD4 T-cell destruction. This is when the host is the most infectious.
  • Chronic — also known as clinical latency or asymptomatic HIV infection, the chronic phase is the second stage of infection. Viral replication is low and without treatment, those infected will progress to AIDS within 10+ years.
  • AIDS — at this point, the virus has tremendously damaged the immune system and the host can no longer fight opportunistic infections.

Definition of advanced HIV disease

The World Health Organization (WHO) defines four clinical stages of HIV disease—stage 1 through 4, based on the severity of symptoms and coinfections and progression to AIDS.

 

For adults, adolescents and children older than five years, advanced HIV disease is defined as having a CD4 T-cell count <200 cells/mm3 or WHO stage 3 or 4 event. All children younger than 5 years old with HIV are considered as having advanced HIV disease.3

How is HIV diagnosed?

Antibody tests are the most widely used diagnostic tests to detect HIV infection. It can take about 28 days post-exposure (window period) for HIV-specific antibodies to be detected. Nucleic acid tests (NAT) help determine the viral load in patients. The 2015 World Health Organization (WHO) “Clinical Guidelines: HIV Diagnosis” provides diagnostic test recommendations for different patient groups.4

Biology of HIV infection

HIV is a retrovirus with a genome of 9.8 kilobases coding for a very small number of proteins and with a high mutation rate. The lipid envelope surrounding the core is derived from host cells and is studded with glycoproteins, which are of paramount importance during infection and for eliciting immunogenicity. The envelope protein gp120 binds to CD4 to fuse with T-cells and macrophages. Upon entry into the host cell, the viral RNA is reverse transcribed to DNA, which then integrates into the host genome and gets replicated using the hijacked host machinery. This results in the activation of immune responses instantly, resulting ultimately in depletion of the CD4+ T-cell population through various mechanisms.5

HIV-mediated CD4+ T-cell depletion

HIV-mediated CD4+ T-cell depletion is believed to occur through several stages—(i) enhanced T-cell production upon infection, (ii) accelerated destruction of T-cells through immune responses, (iii) accelerated T-cell production as a response to T-cell depletion through cytokine signaling in the lymph nodes, (iv) accelerated viral replication resulting in the destruction of progenitor cells in the bone marrow, thymus and peripheral lymphoid systems.

 

References

  1. World Health Organization. HIV/AIDS Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/hiv-aids. Published July 6, 2020. Accessed September 30, 2020.

  2. Naif HM. Pathogenesis of HIV Infection. Infect Dis Rep. 2013;5(Suppl 1):e6. Published 2013 Jun 6. doi:10.4081/idr.2013.s1.e6

  3. World Health Organization. Guidelines for managing advanced HIV disease and rapid initiation of antiretroviral therapy. https://www.who.int/hiv/pub/guidelines/advanced-HIV-disease/en/. Published July 2017. Accessed September 30, 2020.

  4. World Health Organization. Clinical Guidelines: HIV Diagnosis. Chapter 2. https://www.who.int/hiv/pub/arv/chapter2.pdf?ua=1 Accessed October 4,2020.

  5. Cowley S. The biology of HIV infection. Lepr Rev. 2001;72(2):212-220. doi: 10.5935/0305-7518.20010028

  6. McCune JM. The dynamics of CD4+ T-cell depletion in HIV disease. Nature. 2001;410(6831):974-979. doi: 10.1038/35073648
HIV Monitoring
Down Arrow

The BD Multitest™ 6-Color TBNK Reagent with optional BD Trucount™ Tubes is intended for use with the BD FACSLyric™, BD FACSCanto™ II, and BD FACSCanto™ Flow Cytometers to determine the percentages and absolute counts of the following mature human lymphocyte subsets in peripheral whole blood for immunophenotyping: 

T-lymphocytes (CD3+) 

B-lymphocytes (CD19+) 

Natural killer (NK) lymphocytes (CD3–CD16+ and/or CD56+)

Helper/inducer T-lymphocytes (CD3+CD4+) 

Suppressor/cytotoxic T-lymphocytes (CD3+CD8+) 

This reagent is indicated for use in the immunological assessment of normal individuals and patients having, or suspected of having, immune deficiency.

BD FACSLyric™ and BD FACSCanto™ Flow Cytometers are Class 1 Laser Products.

The BD FACSLyric™ Flow Cytometer is for In Vitro Diagnostic Use with BD FACSuite™ Clinical Application for up to six colors. The BD FACSLyric™ Flow Cytometer is for Research Use Only with BD FACSuite™ Application for up to 12 colors. Not for use in diagnostic or therapeutic procedures.

The BD FACSCanto™ Flow Cytometer is for In Vitro Diagnostic Use for up to six colors. Seven to ten colors are for Research Use Only.

BD Trucount™ Tubes are used for determining absolute counts of leucocytes in blood. BD Trucount™ Tubes are designed for use with in vitro diagnostic products such as BD Tritest™ Reagents and a suitably equipped flow cytometer. BD Trucount™ Tubes can be used with the BD FACS™ Loader.

Cy is a trademark of Global Life Sciences Solutions Germany GmbH or an affiliate doing business as Cytiva.