To sustain life, cells divide, proliferate and die, or exist in a quiescent state. To make the decision of whether to enter the cell cycle or not, cells integrate information from a variety of intracellular and extracellular signals. Chief among the intracellular signals is the phosphorylation of proteins belonging to the pocket protein family, such as p107, p130 and retinoblastoma protein (Rb). A series of signal transduction events starting from the activation of cyclin-dependent kinase 2 (CDK2) to binding of E2F -target transcription to phosphorylation of Rb helps maintain cell-cycle progression.1 After cell division, cells either enter another cell cycle or reduce their CDK activity and enter the quiescent state. Cells are also programmed for death at the genetic level as a response to DNA damages through the process of apoptosis.2 Apoptosis is triggered by caspase-mediated signal transduction pathways. Cell division, proliferation, and apoptosis and death are integral parts of life.