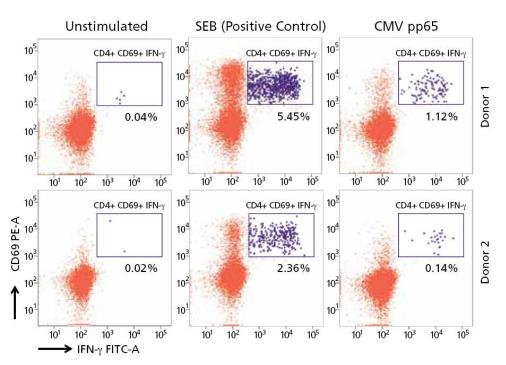
Optimizing Intracellular Flow Cytometry

Detection of Cytokines, Transcription Factors, and Phosphoprotein by Flow Cytometry

Presented by Erika O'Donnell, PhD, BD Biosciences

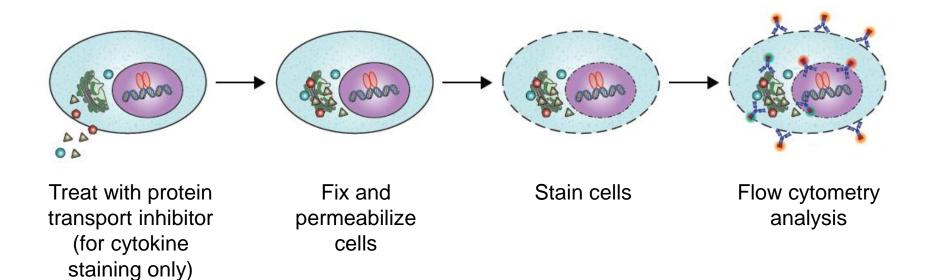
Outline

- Basic principles of intracellular flow cytometry
- Detection of cytokines
- Detection of transcription factors
- Detection of phosphoprotein
- Combining techniques



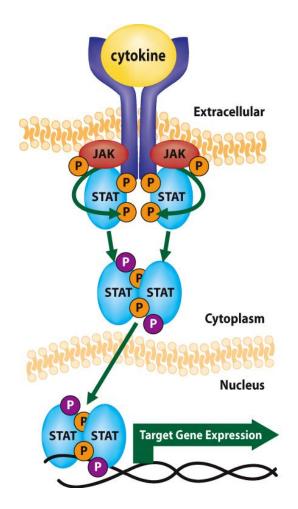
Applications of Intracellular Flow Cytometry

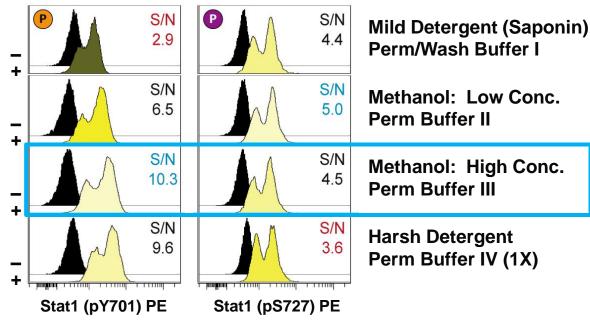
- Identification/phenotyping of cell populations
- Study of cellular signaling, function, and differentiation
- Simultaneous analysis of multiple proteins
- Analysis of frequency and magnitude of responses within heterogeneous samples


Applications of Intracellular Flow Cytometry

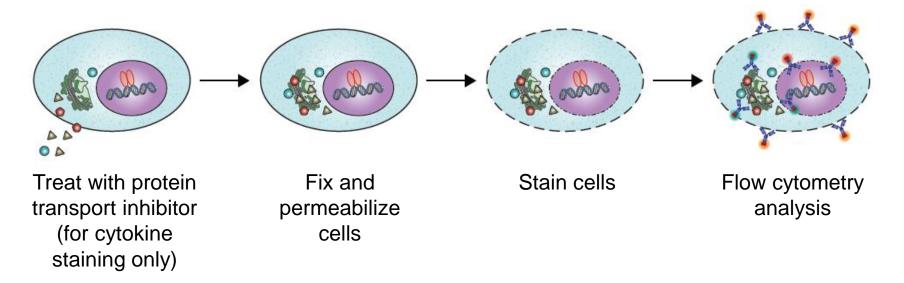
- Human whole blood was stimulated with staphylococcal enterotoxin B or cytomegalovirus pp65 for 6 hours in the presence of Brefeldin A.
- Cells were fixed, permeabilized, and stained using the BD FastImmune™ 3-color CD4 intracellular cytokine detection kit.
- Cells were analyzed on a BD FACSVerse™ flow cytometer.

Overview of Intracellular Staining




Optimal Conditions for Intracellular Staining Depend on Epitope Accessibility

- To access intracellular antigens, cells must be fixed and permeabilized.
- Different permeabilization conditions favor the detection of different types of epitopes.
 - Cytokines (once trapped inside the cell) are accessible using gentle conditions.
 - Transcription factors and phosphoproteins often require stronger permeabilization buffers.
 - Cellular fixation and permeabilization conditions can have adverse effects on surface antigens or fluorochromes.

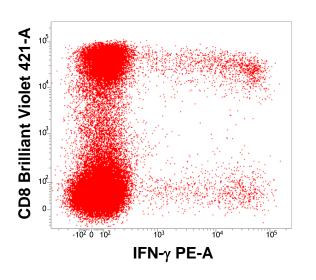

Optimal Conditions for Intracellular Staining Depend on Epitope Accessibility

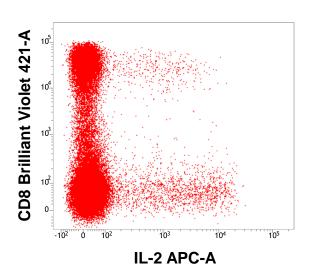
- Human PBMCs were left untreated (–) or were activated (+) with human IFN-α (Stat1 pY701) or PMA (Stat1 pS727).
- Cells were fixed using BD Cytofix[™] fixation buffer and permeabilized using BD Phosflow[™] perm buffer I, II, III, or IV prior to staining.

Detection of Cytokines by Flow Cytometry

- Because cytokines are secreted proteins, they must be trapped inside the cell using a protein transport inhibitor.
- BD Cytofix/Cytoperm[™] buffer is recommended for detection of cytokines by flow cytometry.
- Surface markers are usually stained prior to fixation and permeabilization.

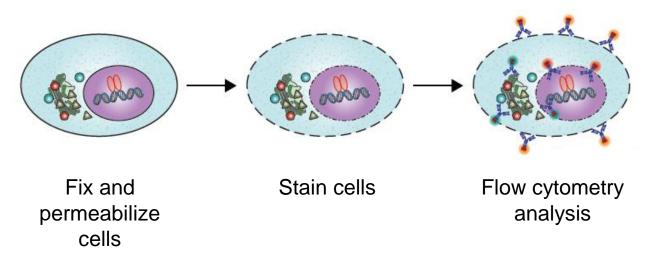
Protein Transport Inhibitors for Cytokine Detection by Flow Cytometry


Monensin (BD GolgiStop™) and Brefeldin A (BD GolgiPlug™) inhibitors are commonly used to trap cytokines inside the cell for analysis.

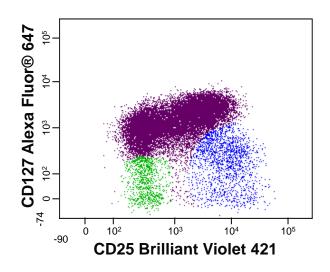

- Work by slightly different mechanisms
 - Monensin prevents protein secretion by interacting with the Golgi transmembrane Na++/H+ transport.
 - Brefeldin A redistributes intracellularly produced proteins from the cis/medial Golgi complex to the endoplasmic reticulum.
- Different inhibitors may work better for detection of different cytokines.

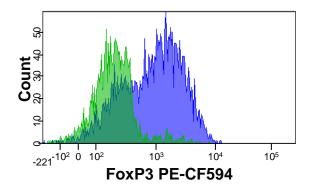
Species	Cytokines	Transport Inhibitor
Human	IL-1 α , IL-6, IL-8, TNF- α	Monensin
Human	IFN- γ , IL-2, IL-10, IL-12, MCP-1, MCP-3, MIG, MIP-1 α , RANTES	Either monensin or brefeldin A
Mouse	IL-6, IL-12, TNF- α	Brefeldin A
Mouse	GM-CSF, IL-3, IL-4, IL-5, IL-10	Monensin
Mouse	IFN-γ, IL-2	Either monensin or brefeldin A

Example 1: IFN-γ and IL-2 Production in CD8+ Cells

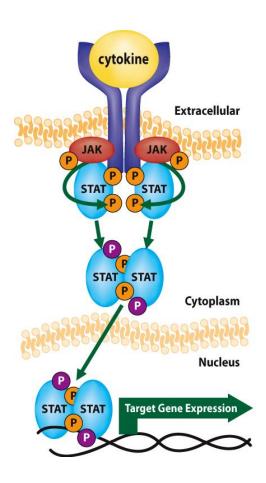


- Human PBMCs were stimulated with staphylococcal enterotoxin B for 6 hours in the presence of Brefeldin A.
- Cells were fixed and permeabilized using the BD Cytofix/Cytoperm buffer system.
- Cells were stained with CD3 FITC, CD4 PerCP-Cy[™]5.5, CD8 BD Horizon[™]
 Brilliant Violet[™] 421, IFN-γ PE, and IL-2 APC.
- · Cells were analyzed on a BD FACSVerse flow cytometer.


Detection of Transcription Factors by Flow Cytometry


- Transcription factors are proteins that bind to specific DNA sequences and regulate gene expression.
- BD Pharmingen™ transcription factor buffer is the recommended starting buffer.
 - Compatible with staining of most surface markers (stained before or after cellular permeabilization) and cytokines

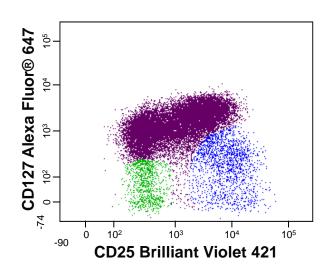
Example 2: Detection of FoxP3 Regulatory T Cells (Tregs)

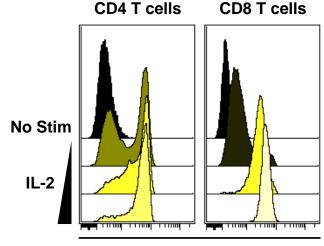


- Tregs are a subset of T cells that regulate the immune response by suppressing the activity of other T cells.
- Human PBMCs were stained for surface markers CD4 FITC, CD25 Brilliant Violet 421, and CD127 Alexa Fluor® 647.
- After washing, cells were fixed and permeabilized with the BD Pharmingen transcription factor buffer set and stained with FoxP3 PE-CF594.
- Data was acquired on a BD FACSVerse flow cytometer.

Detection of Phosphoprotein by Flow Cytometry (BD Phosflow)

- Proteins are phosphorylated in response to many types of stimuli including cytokines and small molecules.
- Protein phosphorylation is transient; cells must be fixed quickly to maintain phosphoepitopes.
- Perm buffer III is the recommended starting buffer for most BD Phosflow applications.
 - Perm buffer III is a harsh denaturing buffer.
 - Other perm buffers are available.

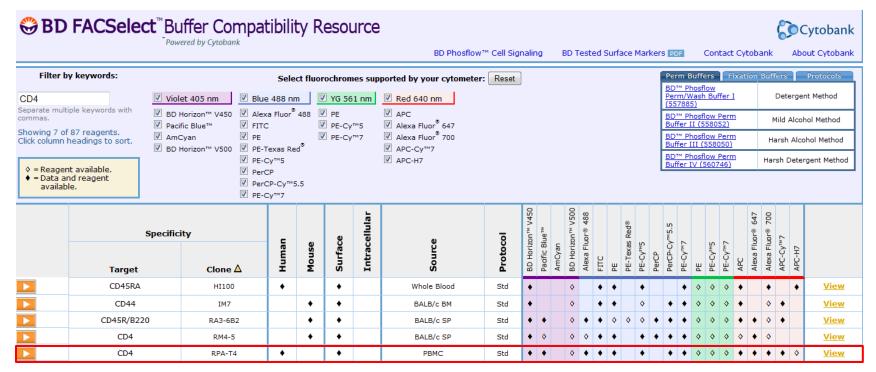

Considerations for Phosphospecific Flow Cytometry


- Stimulation kinetics: most phosphorylation events occur very rapidly
- Controls: Unlike isotype controls, unstimulated cells take into account basal phosphorylation and the unique background characteristics of each antibody
- Expression level of signaling protein of interest
- Perm buffer III can impact surface marker staining performed before or after fixation and permeabilization
 - The BD FACSelect™ buffer compatibility resource lists buffer compatibility for many popular markers. (http://www.cytobank.org/facselect/)

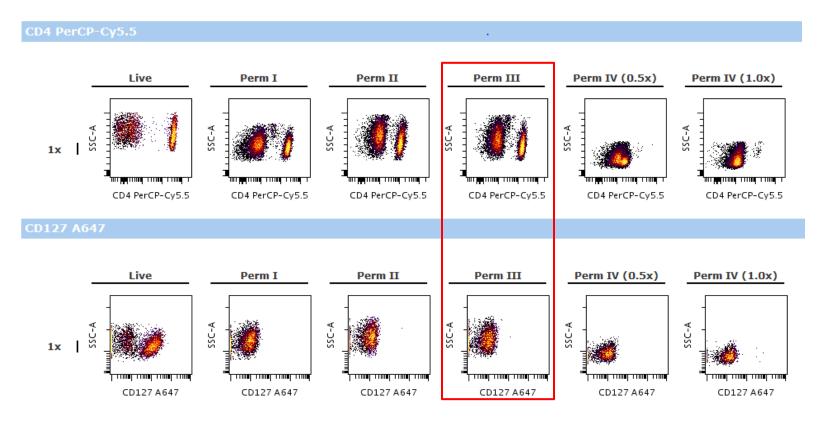
Example 3: Enhanced IL-2 Sensitivity of Tregs

- Stimulation by IL-2 leads to Stat5 (pY694) phosphorylation in most human T cells.
- Tregs express large amounts of the IL-2 receptor alpha chain (CD25). Do they respond differently to treatment with IL-2?

Stat5 (pY694) Alexa Fluor® 647


Human whole blood was stimulated with 1, 10, or 100 ng/mL of IL-2 for 15 min prior to fixation, permeabilization, and staining with the BD Phosflow™

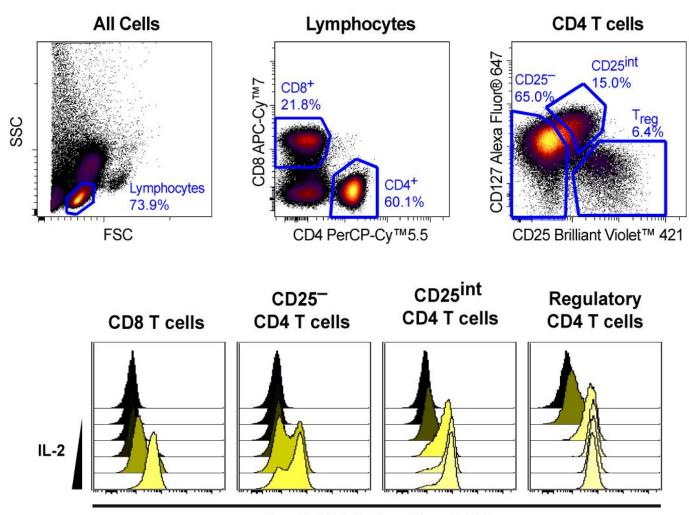
T-cell activation kit.


Determination of Buffer Compatibility

- T-cell subsets were identified using CD4 PerCP-Cy5.5, CD8 APC-Cy[™]7, CD25 Brilliant Violet 421, and CD127 Alexa Fluor® 647.
- To determine compatibility and recommended staining conditions for perm buffer III, the BD FACSelect buffer compatibility resource was used.

Determination of Buffer Compatibility (continued)

- CD4 is compatible with perm buffer III and other buffers.
- CD127 is not compatible with post-permeabilization staining.
 - Use an alternative protocol with CD127.



Example 3: Enhanced IL-2 Sensitivity of Tregs (continued)

- Human PBMCs were stained with CD127 Alexa Fluor® 647 during a 15-minute stimulation with 0-, 0.01-, 0.1-, 1-, 10-, or 100-ng/mL doses of recombinant IL-2.
- Cells were fixed using BD Cytofix fixation buffer and permeabilized using perm buffer III.
- Cells were then stained with Stat5 (pY694) Alexa Fluor® 488, CD4 PerCP-Cy5.5, CD8 APC-Cy7, and CD25 Brilliant Violet 421.
- Samples were acquired using a BD LSRFortessa™ flow cytometer and analyzed using Cytobank software.

Example 3: Results

Considerations when Combining Different Intracellular Techniques

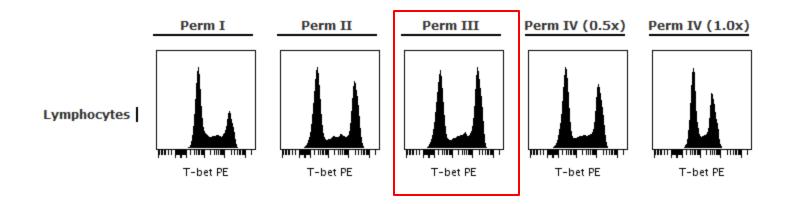
Timing of signaling responses

 Signaling responses such as protein phosphorylation may have ended before others such as cytokine expression begin.

Buffer selection

- Need to select markers and fluorochromes compatible with the permeabilization method needed.
- May need to try multiple buffers.

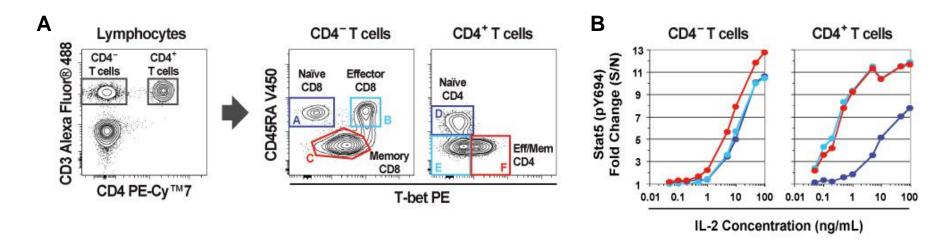
Staining protocols

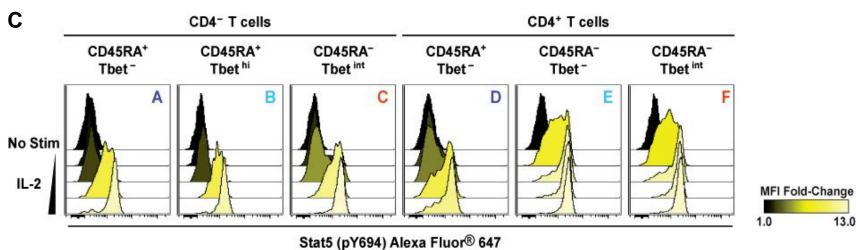

 Staining surface markers prior to cell permeabilization may be necessary.

Example 4: IL-2 Response in Th1-Like and Non-Th1 Effector Memory CD4+ T Cells

- In this experiment, T-bet was used to identify Th1-like cells.
 - T-bet is a transcription factor that controls the expression of IFN-γ.
- The T-bet antibody is compatible with perm buffer III.

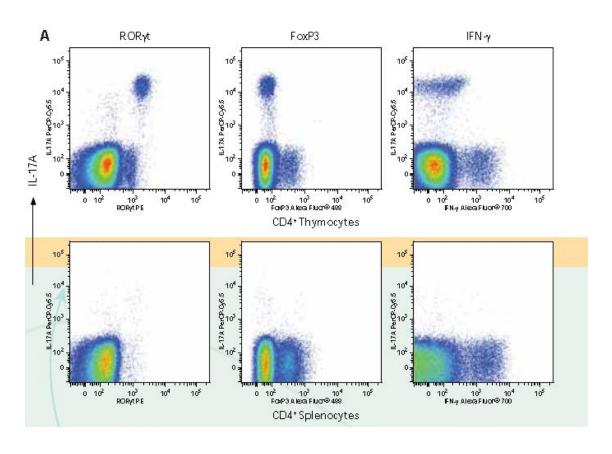
T-bet PE




Example 4, continued

- Human whole blood was stimulated with various concentrations of IL-2 (0.05–100 ng/mL) for 15 min.
- Cells were fixed with BD Phosflow[™] lyse/fix buffer and permeabilized with perm buffer III.
- Cells were stained with CD3 Alexa Fluor® 488, CD4 PE-Cy7, CD45RA V450, T-bet PE, and Stat5 (pY694) Alexa Fluor® 647.
- Samples were acquired using a BD™ LSR II flow cytometer and analyzed with Cytobank software.

Example 4: Results



Example 5: Phenotypic Analysis of Th17 Cells from Mouse Spleen and Thymus

- RORγT is important for the secretion of IL-17 and the maintenance of CD4+CD8+ thymocytes.
- Cells isolated from BALB/c thymus and spleen were surface stained with fluorescently labeled antibodies to surface markers CD44, CD62L, CD196, and appropriate isotype controls.
- Cells were fixed and permeabilized with the BD Pharmingen transcription factor buffer set.
- Cells were then stained with antibodies to transcription factors RORγT and Foxp3 as well as cytokines IL-17A and IFN-γ.

Example 5: Results

Summary and Conclusions

- Intracellular flow cytometry is a powerful technique for the study of cellular signaling, function, and differentiation within subpopulations of cells.
- Different buffers work best for particular applications due to the biochemistry and cellular localization of the antigen.
 - BD Cytofix/Cytoperm (Cat. No. 554722) for cytokines
 - BD Pharmingen transcription factor buffer set (Cat. No. 562574) for transcription factors as well as transcription factors combined with cytokines
 - BD Phosflow[™] perm buffer III (Cat. No. 558050) for phosphoprotein detection

If you have further questions:

Contact your US Reagent Sales Rep

or e-mail: ResearchApplications@bd.com

For Research Use Only. Not for use in diagnostic or therapeutic procedures.

Alexa Fluor® is a registered trademark of Life Technologies Corporation.

CF is a trademark of Biotium, Inc.

Cy™ is a trademark of Amersham Biosciences Corp.

