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About this handbook
Introduction This handbook is a comprehensive reference to help you prepare 

and analyze single-cell libraries with the BD Rhapsody™ 
Single-Cell Analysis system or the BD Rhapsody™ Express 
Single-Cell Analysis system. Major aspects of the BD single-cell 
genomics bioinformatics workflow are covered. This reference 
explains the BD single-cell genomics sequencing and clustering 
algorithms to deepen your understanding of how single-cell mRNA 
and protein (AbSeq) expression profiles are generated and 
clustered. In addition, the handbook defines every analysis metric. 

The BD single-cell genomics team
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2
BD Rhapsody™  sequencing

analysis
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How to use this chapter
This chapter provides in-depth information on the process, output 
metrics, and interpretation of output from BD Rhapsody 
sequencing analysis:

For definitions of the clustering analysis metrics for targeted 
sequencing analysis, see BD Rhapsody™ Targeted clustering 
analysis (page 73).

Section Information

Understanding the BD Rhapsody 
Analysis pipeline step-by-step 
(page 11)

Detailed description of each 
step in the BD Rhapsody 
pipeline

Reviewing sequencing analysis 
output files (page 37)

Definitions of the sequencing 
analysis output metrics

Interpreting output metrics 
(page 65)

Recommended solutions to 
possible problems during 
sequencing analysis
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Understanding the BD Rhapsody Analysis pipeline 
step-by-step
Introduction This section provides an in-depth description of each step in the 

BD Rhapsody Analysis pipelines.

For instructions on running the pipeline, see the BD Single-Cell 
Genomics Analysis Setup User Guide (Doc ID: 47383).

Genomics technical publications are available for download from 
the BD Genomics Resource Library at bd.com/genomics-resources.

BD Biosciences recommends analyzing datasets that are ≤100 GB 
in size. For datasets (compressed FASTQ FILES from all libraries) 
>100 GB, contact BD Biosciences technical support at 
scomix@bdscomix.bd.com.

Overview The BD Rhapsody™ assays are used to create sequencing libraries 
from single-cell multiomic experiments. 

The analysis pipeline works with paired-end FASTQ R1 and R2 
files generated from Illumina sequencers. The minimum read 
length required is 60 bp for R1 and 42 bp for R2. R1 reads contain 
information on the cell label and molecular identifier, and R2 reads 
contain information on the gene. See Figure 1. 

Figure 1. Structure of read pair that is generated by sequencing the 
libraries prepared with BD Rhapsody assays.

cDNA

R1 read

R2 read

poly TUMICell label

mailto: researchapplications@bd.com
http://www.bd.com/genomics-resources
mailto: researchapplications@bd.com
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Targeted Overview After sequencing, the targeted analysis pipeline takes the FASTQ 
files, an mRNA reference file, and an AbSeq reference file (if the 
latter is required) for gene alignment. See Figure 2.

Figure 2. Overview of the steps in the targeted analysis pipeline. 
For definitions of terms, see Glossary (page 87).

R1 FASTQ 

Read quality filtering
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Read quality filtering
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Raw molecules
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Cluster assignment and 
representative features

Collapse reads to raw 
molecules

RSEC MI adjustment

DBEC MI adjustment

Cell label filtering

Clustering analysis

Process that filters out reads

Process that does not filter reads

Input / output of a process

Legend:

Sequencing 
analysis

Clustering 
analysis

Sample determination

Putative cells

Sample multiplexing
(optional)
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WTA Overview After sequencing, the WTA pipeline takes the FASTQ files, a 
reference genome, and a transcriptome annotation file. See 
Figure 3. 

Figure 3. Overview of the steps in the WTA analysis pipeline. For 
definitions of terms, see Glossary (page 87).

The next sections describe the analysis pipeline step-by-step.
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Read quality ltering

R2 FASTQ 
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Step 1. Filter by read quality
Filtering criteria Read pairs with low sequencing quality are first removed. This step 

reduces the influence of poor sequencing quality from the metrics 
that are specific to the BD Rhapsody assays.   

The following filtering criteria are applied to each read pair:

• Read length: If the length of R1 read is <60 bp or R2 read is 
<42 bp, the R1/R2 read pair is dropped.

• Mean base quality score of the read: If the mean base quality 
score of either R1 read or R2 read is <20, the read pair is 
dropped.

• Highest Single Nucleotide Frequency (SNF) observed across 
the bases of the read: If SNF is ≥0.55 for the R1 read or SNF 
≥0.80 for the R2 read, the read pair is dropped. This criterion 
removes reads with low complexity such as strings of identical 
bases and tandem repeats.

The thresholds for each filter are determined empirically.

Step 2. Annotate R1 reads
R1 structure The quality-filtered R1 reads are analyzed to identify the cell label 

section sequence (CLS), common sequences (L), Unique Molecular 
Identifier (UMI) sequence, and if applicable, poly(T) tail. See 
Figure 4.

Figure 4. Structure of R1 read.

CLS1 L1 CLS2 L2 CLS3 UMI poly T
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Cell label Information of the cell label is captured by bases in three sections 
(CLS1, CLS2, CLS3) along each R1 read. Two common sequences 
(L1, L2) separate the three CLSs, and the presence of L1 and L2 
relates to the way the capture oligonucleotide probes on the beads 
are constructed. By design, each CLS has one of 96 predefined 
sequences, which has a Hamming distance of at least four bases 
and an edit distance of at least two bases apart. A cell label is 
defined by the unique combination of predefined sequences in the 
three CLSs. Thus, the maximum possible number of cell labels is 
963 (884,736). A cell label is represented by an index between 
1–963.

Reads are first checked for perfect matches in all three 
pre-designed CLS sequences at the expected locations, CLS1: 
position 1–9, CLS2: position 22–30, and CLS3: position 44–52. 
Reads with perfect matches are kept. 

The remaining reads are subjected to another round of filtering to 
recover reads with base substitutions, insertions, deletions caused 
by sequencing errors, PCR errors, or errors in oligonucleotide 
synthesis.

UMI By design, the UMI is a string of eight randomers immediately 
downstream of CLS3. If the CLSs have perfect matches or base 
substitutions, the UMI sequence is at position 53–60. For reads 
with insertions or deletions within the CLSs, the UMI sequence is 
eight bases immediately following the end of the identified CLS3.

Poly(T) tail If R1 is <67 bp, the poly(T) check is disabled. If R1 is ≥ 67 bp, the 
poly(T) check is enabled. 

Following the UMI, a poly(T) tail, the polyadenylation [poly(A)] 
complement of an mRNA molecule, is expected. Each read with a 
valid cell label is kept for further consideration only if ≥6 out of 
8 bases after UMI are found to be Ts.
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Step 3. Annotate R2 reads
Criteria for a valid 
R2 read

Targeted assays:

For targeted assays, the pipeline uses Bowtie2 to map the filtered 
R2 reads to the reference panel sequences. Option --norc is 
enabled to map all of the reads only to the forward strand of the 
provided reference. The default setting of the local alignment mode 
is used for all other parameters.

For targeted assays, an R2 read is a valid gene alignment if all of 
these criteria are met: 

• The R2 alignment begins within the first five nucleotides. This 
criterion ensures that the R2 read originates from an actual 
PCR priming event. 

• The length of the alignment that can be a match or mismatch 
in the CIGAR (Compact Idiosyncratic Gapped Alignment 
Report) string is >37, where CIGAR is a sequence of base 
lengths to indicate base alignments, insertions, and deletions 
with respect to the reference sequence. See samtools.github.io/
hts-specs/SAMv1.pdf.

• The read does not align to phiX174. 

WTA assays:

For WTA assays, the pipeline uses STAR to map the filtered R2 
reads to the transcriptome. 

An R2 is a valid gene alignment if all of these criteria are met:

• The read aligns uniquely to a gene in the reference.

• The read does not align to phiX174.

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
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Step 4. Combine information from R1 and R2 
annotations
Retain R1 and R2 
reads

Read pairs with a valid R1 read and a valid R2 read are retained 
for further analyses. A valid R1 read requires identified CLSs, a 
UMI sequence with non-N bases, and if applicable, a poly(T) tail. 

A valid R2 requires the reads to be uniquely mapped to a gene in a 
panel (targeted) or transcriptome (WTA). For targeted, it must also 
have the correct PCR2 primer sequence at the start and an 
alignment of >37 bases in length.

Step 5. Annotate molecules
Collapse reads into 
raw molecules

Reads with the same cell label, same UMI sequence, and same gene 
are collapsed into a single raw molecule. The number of reads 
associated with each raw molecule is reported as the raw adjusted 
sequencing depth.

Remove artifact 
molecules using 
RSEC and DBEC 
UMI adjustment 
algorithms

PCR and sequencing often generate errors. If the error occurs 
within the UMI sequence, the R1/R2 read pair is called a unique 
molecule but is, in fact, an artifact. Artifact molecules contribute to 
an over-estimated molecule count of a gene in a cell. As sequencing 
depth increases, the number of raw molecules rises and never 
plateaus due to these artificial molecules. 

To remove the effect of UMI errors on molecule counting, 
BD Biosciences has developed a set of UMI adjustment algorithms. 
UMI errors that are single base substitution errors are identified 
and adjusted to the parent UMI barcode using recursive 
substitution error correction (RSEC). For targeted sequencing 
analysis, other UMI errors derived from library preparation steps 
or sequencing base deletions are later adjusted using distribution-
based error correction (DBEC).
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Note that targeted sequencing analysis uses RSEC and DBEC, 
while WTA sequencing analysis uses RSEC only.

Figure 5 shows the workflow of the two algorithms used on data 
generated from BD Rhapsody targeted assays. Figure 5 shows how   
the two algorithms are applied to example results to correct the 
apparent counts of molecules. 

Figure 5. Workflow of UMI count adjustment for targeted assays 
and WTA assays
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Figure 6. Example results after applying RSEC and DBEC 
algorithms. For targeted sequencing analysis, if we consider only 
raw UMIs, the apparent total number of molecules continues to 
rise with sequencing depth, because the presence of sequencing and 
PCR errors contribute to unique UMIs. RSEC removes artifact 
molecules from single base substitutions in the UMI sequence. 
Further adjustment by DBEC removes artifact molecules originated 
from PCR errors. As a result, the number of molecules stabilizes 
with additional sequencing, indicating the library is sequenced to 
saturation. 

�#$%

45$%

������#$%��&'����&�&�*��

������!

8+�����#$%

8+�����#$%���&�45$%

9�
��

)��
�(

,�
���

+�(
�)

�"
�)

��



Doc ID: 54169 Rev. 7.0

BD Single-Cell Genomics Bioinformatics Handbook20

Collapse molecules that differ by one base in the UMI sequence 
using RSEC

RSEC considers two factors in error correction: 1) similarity in 
UMI sequence and 2) raw UMI coverage or depth. See Figure 7. 

Figure 7. Example of the RSEC algorithm. Nine raw UMIs are 
collapsed into two UMIs.

For the molecules from each combination of cell label and gene, 
UMIs are connected when their UMI sequences are matched to 
within one base (Hamming distance = 1). For each connection 
between UMI x and y, if Coverage(y)> 2 * Coverage(x) – 1, then y 
is Parent UMI and x is Child UMI. Based on this assignment, child 
UMIs are collapsed to their parent UMI. This process is recursive 
until there are no more identifiable parent-child UMIs for the gene. 
See Figure 7. 

The number of reads for each child UMI is added to the parent, so 
no reads are lost. The sum of the reads is the RSEC-adjusted depth 
of the RSEC-adjusted molecule.
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Adjust molecule counts by DBEC (Targeted assays only)

The RSEC-adjusted molecule counts are further corrected by 
DBEC. 

DBEC is applied on a per-gene basis. The algorithm is based on the 
assumption that the pre-amplified set of molecules of the same 
gene, regardless of the cell of origin, is subject to the same 
amplification efficiency and, therefore, should have similar read 
depth. Artifact molecules created later in the PCR cycles, such as 
those derived from PCR chimera formation, will likely have less 
read depth. 

DBEC considers the distribution of RSEC-adjusted depth 
distribution, not UMI sequence. The sequencing depth of 
RSEC-adjusted molecules for each gene is a bimodal distribution. 
See Figure 8. The lower mode of the distribution likely represents 
artifact molecules, and the upper mode likely represents true 
molecules. The algorithm fits two negative binomial distributions 
to statistically distinguish between the two modes. Molecules in the 
upper mode are retained (DBEC-adjusted molecules), while the 
molecules in the lower mode are discarded. The average depth of 
the molecules in the upper mode is known as the DBEC-adjusted 
depth, and the depth of molecules in the lower mode is the metric 
error depth. The cutoff between the two modes is the DBEC 
minimum depth.
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Figure 8. Example of the DBEC algorithm for gene CCL2. Counts 
under the orange bars are kept and labelled as DBEC-adjusted 
molecules. Counts under the blue bars are labelled as erroneous 
molecules and are discarded. The error depth and DBEC-adjusted 
depth arrows point to the respective average depths.

DBEC is applied to genes with an average non-singleton RSEC 
sequencing depth ≥4. This means that the depth is calculated after 
removing RSEC UMIs with only one representative read of ≥4. 
According to the Poisson distribution, if the average UMI depth is 
<4, more signal UMIs are removed than error UMIs. As a result, a 
gene is marked pass if its average RSEC depth ≥4 and is subject to 
DBEC; otherwise, it is marked low depth and bypasses DBEC. If 
no count is associated with the gene, it is labelled as not detected. 

45$%�(���(�(�&�*��

45$% �&'����&�&�*��

$���������(�)�"�)��

45$% �&'����&�(�)�"�)��

�#$% �&'����&�&�*��

:���;�%%
�

<
�(

,�
���

+�(
�)

�"
�)

��
$�����&�*��



Doc ID: 54169 Rev. 7.0

Chapter 2: BD Rhapsody™  sequencing analysis 23

DBEC removes molecules and the reads associated with the 
removed molecules from consideration in downstream analyses. 
The percentage of reads retained by DBEC is reported together 
with the other pipeline metrics. 

The RSEC and DBEC metrics associated with each gene are 
reported in the file, <sample_name>_UMI_Adjusted_Stats.csv.

Step 6. Determine putative cells
Excessive cell 
labels

In theory, the number of unique cell labels detected by the 
bioinformatics pipeline should be similar to the number of cells 
captured and amplified by the BD Rhapsody™ workflow. 
However, various processes throughout the workflow can 
introduce noise that contribute to excessive cell labels generated 
during sequencing analysis, including: 

• Hybridizing polyadenylated [poly(A)] oligonucleotides to 
beads residing in neighboring wells when the cell lysis step is 
too long

• Underloading beads in BD Rhapsody™ Cartridges resulting in 
cells without beads and the RNA from the cells diffusing to 
adjacent wells

• Experiencing low-level contamination during oligonucleotide 
and bead synthesis

• Generating errors during the PCR amplification steps of the 
workflow

To distinguish cell labels associated with putative cells from those 
associated with noise, a multi-step algorithm was designed for 
filtering cell labels. See Figure 9.
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Figure 9. Workflow for determining putative cells.
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Putative cell 
identification using 
second derivative 
analysis (basic 
implementation)

The principle of the cell label filtering algorithm is that cell labels 
from actual cell capture events should have many more reads 
associated with them than noise cell labels. All reads associated 
with DBEC-adjusted molecules from all genes are taken into 
account. The number of reads (post-DBEC) of each cell is plotted 
on a log10-transformed cumulative curve, with cells sorted by the 
number of reads in descending order. See Figure 10, left. In a 
typical experiment, a distinct inflection point is observed, indicated 
by the red vertical line. The algorithm finds the minimum second 
derivative along the cumulative reads curve as the inflection point. 
See Figure 10, right. Cell labels to the left of the red vertical line 
(Figure 10, left) are most likely derived from a cell capture event 
and are considered as signal (labeled as cell labels set A or 
candidate cell labels). The remaining cell labels to the right of the 
red line are noise. Up to this point, the analysis is the basic 
implementation of the second derivative analysis.

Figure 10. Results of the basic implementation of the second 
derivative analysis applied to a typical BD Rhapsody™ library.

�����
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If every cell in the sample is well represented by genes from the 
gene list (panel genes for targeted or detected genes in the 
transcriptome for WTA), there is only one inflection point. The 
number of reads of the putative cells is a single distribution well 
separated from the noise distribution. 

There are situations, however, when a sample contains cells with a 
very wide range of number of molecules of genes in the gene list. If 
subpopulations of cells with high and low mRNA content are 
considerably large, multiple inflection points can be observed. 
Example scenarios include biological samples such as peripheral 
blood mononuclear cells (PBMCs) with plasma cells being much 
larger and active carrying thousands of molecules in the gene list 
and lymphocytes being smaller and less active carrying tens of 
molecules in the gene list (see Figure 11A) or artificial mixtures of 
cell lines cells and primary cells (see Figure 11B). The basic 
implementation of the second derivative analysis chooses the 
inflection point that includes all distributions beyond the usual 
noise distribution. Specifically, inflection points are considered 
valid if the second derivative minimum corresponding to the 
inflection point is at least half as deep as the global minimum and 
is ≤–0.3. The smoothing window of the second derivative curve 
increases until there are two valid inflection points. The inflection 
point corresponding to the larger cell number is deemed the better 
one. 
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Figure 11. Results of basic implementation of the second 
derivative analysis on libraries with very different levels of mRNA 
content. A. PBMCs with myeloid (high mRNA content) and 
lymphoid (low mRNA content) cells. B. Mixture of Jurkat and 
Ramos cells (cell lines, high mRNA content) and PBMCs (low 
mRNA content). Both libraries were analyzed with the BD 
Rhapsody™ Immune Response Panel Hs (human). 

�
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Removing false 
positives and false 
negatives (refined 
implementation)

In some cases, the basic implementation of the second derivative 
analysis might include small numbers of false positive and false 
negative cell labels. Additional refinement steps are implemented 
to identify these false positive cell labels in order to generate a final 
set of cell labels for further analysis.

Removing false positives

Consider the case where the chosen inflection point includes the 
populations of cell labels with wide ranges of number of reads per 
cell label. Then, the signal population with lower reads per cell 
label might also include noise cell labels derived from residual 
mRNA molecules from the cells with very high mRNA content. 
The number of reads associated with these noise cell labels derived 
from high-expressing cells can be indistinguishable from low-
expressing cells, which have similar reads per cell.

Since these false positive cells can be hard to identify with reads 
alone, the relative gene expression profile of cell labels can be used 
to identify them. For example, a false positive cell label that is 
derived from a high mRNA-expressing, true positive cell label 
would likely have a similar gene expression profile but with a 
lower read signal. Therefore, a second derivative analysis is done 
on the most variable genes to identify these false positive cell 
labels.

The most variable genes are defined by a process similar to that 
described by Macosko, EZ, et al. [see References (page 70)]:

a. Log-transform read counts of each gene within each cell to 
get the gene expression: log10(count + 1).

b. Calculate the mean expression and dispersion (defined as 
variance/mean) for each gene.

c. Place genes into 20 bins based on their average expression.
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d. Within each bin, calculate the mean and standard deviation 
of the dispersion measure of all genes, and then calculate 
the normalized dispersion measure of each gene using the 
following equation: 

Normalized dispersion = 
(dispersion – mean)/(standard deviation)

e. Apply a cutoff value for the normalized dispersion to 
identify genes for which expression values are highly 
variable even when compared to genes with similar average 
expression. 

A second derivative analysis is applied on variable gene sets 
defined by a different cutoff value for the normalized dispersion to 
derive the cell label filtered set B. For each dispersion cutoff, the 
noise cell labels are determined as A – B. For instance, for three 
cutoff values, noise cell labels are N1 = A – B1, 
N2 = A – B2, and N3 = A – B3, where the minus sign represents the 
set difference. The common noise cell labels detected among N1, 
N2, and N3 are subtracted from cell labels set A. The resultant set 
is denoted as cell label filtered set C = A – intersection(N1, N2, 
N3).

Recovering false negatives

Cells with low numbers of molecules might be missed by the basic 
implementation of the second derivative analysis algorithm, 
because a cell subset might express very few of the genes in the 
gene list. The cell labels carry a very low number of reads, and the 
size of the cell population is small enough that their cell labels do 
not form a distinct second inflection point. These cell labels might 
be mistaken as noise.
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If there are genes specific to the false negative cell label subset (for 
example, marker genes), they can be identified by comparing the 
number of reads for each gene from all detected cell labels to those 
from cell labels deemed as signal. The assumption is that the 
relative abundance of reads for each gene from all of the noise cell 
labels should be no different than that from all of the cell labels 
considered as signal. If a specific cell subset is missed initially, there 
is a set of genes that appears as enriched in the noise cell labels in 
the basic implementation. 

This enriched set of genes is detected by the following steps:

a. For each gene, calculate the total read counts from all 
detected cell labels and from cell labels in set C. 

b. Identify the genes that have the biggest discrepancy in 
representation by cell labels in set C versus all cell labels. 
This is done by plotting and finding the line of best fit to 
detect the genes with the largest residuals at least one 
standard deviation away from the median of residuals of all 
genes. See Figure 12.

Figure 12.  A. and B. Detecting genes enriched in noise as 
determined by the basic implementation of the second derivative 
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analysis. Each dot represents a gene. B. The two red dashed lines 
correspond to one standard deviation above and below the median 
(red solid line). In this example, 53 genes are enriched in the noise 
population.

The second derivative analysis algorithm is run again with this 
enriched set of genes. The recovered cell labels (cell label filtered 
set D) are combined with cell labels in set C to form set E. As a 
final cleanup step, cell labels carrying less than the minimum 
threshold number of molecules are removed. The number of cell 
labels in the final set is the number of putative cells.

Reporting putative 
cells

The category of each cell label is listed in the file 
<sample_name>_Putative_Cells_Origin.csv. The cell label is 
marked basic if it is considered a putative cell in the basic 
implementation when the second derivative analysis is run using 
data from all genes in the gene list. A cell label is marked as refined 
if it is considered a putative cell in the refined implementation and 
is a recovered false negative. In most cases, most putative cell labels 
originate from the basic implementation. See Putative cells origin 
(page 57).

Step 7. Determine the sample of origin 
(sample multiplexing only)
Sample 
multiplexing option

Up to 12 samples of cell suspension can be loaded into a 
BD Rhapsody Cartridge using a BD® Single-Cell Multiplexing Kit. 
Each sample is labelled with a separate Sample Tag from the kit. 

When you start the BD Rhapsody Analysis pipeline, you can select 
the sample multiplex option. You can associate a name with a 
Sample Tag before the pipeline starts, and the specified sample 
names will be used in the output files. 
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To account for every Sample Tag, each Sample Tag sequence in the 
kit is considered during pipeline analysis, whether the Sample Tags 
are used in the experiment or specified with a sample name.

The pipeline automatically adds the Sample Tag sequences to the 
FASTA reference file. Reads that align to a Sample Tag sequence 
and associate with a putative cell are used to identify the sample 
for that cell. 

Sample 
determination 
algorithm

The algorithm first identifies high quality singlets. A high quality 
singlet is a putative cell where more that 75% of Sample Tag reads 
are from a single tag. When a singlet is identified, the counts for all 
the other tags are considered Sample Tag noise.  See Figure 13. 
Sources of low-level noise can be PCR and sequencing errors and 
residual Sample Tag labelling during cell preparation.  

Figure 13. Example of Sample Tag read counts for a putative cell 
that is considered a high quality singlet, labelled SampleTag04. All 
of the other Sample Tag counts are recorded as separate noise 
counts and are summed to find the noise read count for that 
putative cell.

The minimum Sample Tag read count for a putative cell to be 
positively identified with a Sample Tag is defined as the lowest read 
count of a high quality singlet for that Sample Tag. See Figure 14.
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Figure 14. Histogram of number of Sample Tags per putative cell 
for one of the 12 Sample Tags. The red vertical line indicates the 
threshold of minimum Sample Tag read count. Putative cells with 
Sample Tag read counts greater than the threshold (to the right of 
the red line) are considered labelled with this Sample Tag. In 
addition to singlets, these putative cells can include multiplets, 
which are cell labels associated with more than one Sample Tag.

The percentage noise contribution of each Sample Tag of all cells is 
calculated by dividing the total per tag noise by the total overall 
noise. In addition, the total amount of noise versus the total 
Sample Tag count per putative cell is recorded so that a trend line 
can be established to estimate the total per-cell noise given an 
observed number of total Sample Tag count for a cell. See 
Figure 15. The level of antigen expression across cells can vary, 
contributing to variation in Sample Tag count per cell. Generally, 
cells with higher total Sample Tag counts have higher noise Sample 
Tag counts. 

Cells labelled with Sample Tag
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Figure 15. Overall noise profile where each dot is a cell. A trend 
line (in red) is fitted and used to establish the expected amount of 
noise given a total Sample Tag count. Cells that are off the trend 
line are likely multiplets.

To improve sample determination and recover singlets that are not 
initially considered high quality, the algorithm subtracts the 
expected number of per-cell noise counts from each Sample Tag.  
The total expected per-cell noise, derived from the trend line, is 
multiplied by the percentage noise contribution of each Sample Tag 
to determine the expected noise per Sample Tag. 

After subtracting the expected per tag noise, any Sample Tag that 
has a count higher than its minimum read count is called for that 
cell, and the putative cell is considered a called cell.
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When the counts of two or more Sample Tags exceed their 
minimum thresholds, then that putative cell is called as a cross-
sample Multiplet, indicating more than one actual cell in the 
microwell, and the cells are of different samples of origin. Some 
putative cells might not have enough Sample Tag counts to 
definitively call their sample of origin, and those are labeled as 
Undetermined. 

Reporting sample 
origin

If you chose the sample multiplexing option, the main top-level 
RSEC and DBEC data tables contain counts for putative cells from 
all samples combined. The sample of origin for each putative cell is 
listed in the file <sample_name>_Sample_Tag_Calls.csv. This file 
can be used to annotate the combined data tables. The file, 
<sample_name>_Sample_Tag_Metrics.csv reports the metrics from 
the sample determination algorithm. Per sample data tables and 
cluster analysis are output in folders contained in <sample_name> 
_Sample_Tag<number>.zip. 

Step 8. Generate expression matrices
Reporting RSEC 
and DBEC metrics

RSEC-adjusted molecule counts and associated reads of each gene 
for each putative cell and DBEC-adjusted molecule counts and 
associated reads are presented in either .csv or .st format. See 
Expression data (page 53) and Data tables (page 51).
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Step 9. Annotate BAM
Annotating SAM The BAM file output by Bowtie2 or STAR is further annotated to 

summarize the results of the BD Rhapsody Analysis pipeline. The 
table lists the tags appended to the annotation of each read. For 
BAM tags, see BAM and BAM Index (page 50),  
samtools.github.io/hts-specs/SAMv1.pdf, and bowtie-
bio.sourceforge.net/bowtie2/manual.shtml#sam-output.

Step 10. Generate metrics summary
Summary A summary .csv file documenting the metrics of each of the 

analysis steps is generated. See Metrics summary (page 40).

Step 11. Clustering analysis
Clustering 
algorithm

The measured single-cell gene expression profiles go through a 
clustering analysis pipeline. See BD Rhapsody™ Targeted 
clustering analysis (page 73).

https://samtools.github.io/hts-specs/SAMv1.pdf
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#sam-output
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#sam-output
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Reviewing sequencing analysis output files
Before you begin Obtain the output files after running the appropriate pipeline on 

the Seven Bridges Genomics platform or on a local installation. See 
the BD Single-Cell Genomics Analysis Setup User Guide 
(Doc ID: 47383).

Sequencing 
analysis outputs

Most outputs contain a header summarizing the pipeline run. 
Headers contain all of the information needed to re-run the 
pipeline with the same settings.

Output File Content

Metrics summary 
(page 40)

<sample_name>_Metrics_Summary.csv Report containing 
sequencing, 
molecules, and cell 
metrics

BAM and BAM Index 
(page 50)

<sample_name>.final.BAM Alignment file of 
R2 and associated 
R1 annotations

Data tables (page 51) <sample_name>_RSEC_MolsPerCell.csv

<sample_name>_RSEC_ReadsPerCell.csv

<sample_name>_DBEC_MolsPerCell.csv

<sample_name>_DBEC_ReadsPerCell.csv

Reads per gene per 
cell and molecules 
per gene per cell, 
based on RSEC or 
DBEC

<sample_name>_RSEC_MolsPerCell
_Unfiltered.csv.gz

<sample_name>_RSEC_ReadsPerCell
_Unfiltered.csv.gz

<sample_name>_DBEC_MolsPerCell
_Unfiltered.csv.gz

<sample_name>_DBEC_ReadsPerCell
_Unfiltered.csv.gz

Unfiltered tables 
containing all cell 
labels of ≥5 reads
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Expression data 
(page 53)

<sample_name>_Expression_Data.st The expression 
sparse matrix, a 
table of counts in 
sparse format

<sample_name>_Expression_Data
_Unfiltered.st.gz

Compressed file 
containing all cell 
labels of ≥5 reads

Cell label filtering 
(page 55)

<sample_name>_Cell_Label_Filter.png Visualization of cell 
label filtering results

Second derivative 
curve (page 56)

<sample_name>_Cell_Label
_Second_Derivative_Curve.png

Putative cells origin 
(page 57)

<sample_name>_Putative_Cells
_Origin.csv

Algorithm that 
found the putative 
cell: basic or refined

UMI metrics 
(page 58)

<sample_name>_UMI_Adjusted_Stats.csv Metrics from RSEC 
and DBEC 
molecular identifier 
adjustment 
algorithms on a 
per-gene basis

Sample Tag metrics 
(sample multiplexing 
option selected) 
(page 60)

<sample_name>_Sample_Tag_Metrics.csv Metrics from the 
sample 
determination 
algorithm

Output
 (continued)

File Content
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Sample Tag calls 
(sample multiplexing 
option selected) 
(page 62)

<sample_name>_Sample_Tag_Calls.csv Assigned Sample 
Tag for each 
putative cell

Per sample folder 
(sample multiplexing 
option selected) 
(page 63)

<sample_name>
_Sample_Tag<number>.zip

<sample_name>_Multiplet_and
_Undetermined.zip

Data tables, 
expression matrix, 
and clustering 
analysis files for a 
particular sample.

Note: For putative 
cells that could not 
be assigned a 
specific Sample Tag, 
a Multiplet_and
_Undetermined.zip 
file is also output.

Clustering analysis ClusteringAnalysis.zip See Clustering 
analysis outputs 
(page 79)

Output
 (continued)

File Content
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Metrics summary File: <sample_name>_Metrics_Summary.csv

The Metrics summary provides statistics on sequencing, molecules, 
cells, and targets. 

Note:  Sample Tag and AbSeq metrics display only when they are 
used in an experiment.

Example of a portion of the output for targeted assays:
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Example of the output for WTA assays: 

Section/metric Definition Major contributing factors

Sequencing Quality

Total_Reads_in_FASTQ Number of read pairs in the 
input FASTQ files

Sequencing amount

Pct_Reads_Too_Short Percentage of read pairs 
filtered out due to length of 
either R1 <60 bp or 
R2 <42 bp

Sequencing quality

Pct_Reads_Low_Base
_Quality

Percentage of reads filtered 
out due to average base 
quality score of R1 reads <20 
or R2 reads <20

Sequencing quality
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Pct_Reads_High_SNF Percentage of read pairs 
filtered out due to single 
nucleotide frequency ≥55% 
for R1 or ≥80% for R2

Sequencing quality

Pct_Reads_Filtered_Out Percentage of reads removed 
by the combination of length, 
quality, and SNF filters

Sequencing quality

Total_Reads_After
_Quality_Filtering

Number of read pairs after 
length, quality, and SNF 
filtering

 Sequencing amount

 Sequencing run quality

 Library quality

Library Name of library Name of library

Library Quality

Total_Filtered_Reads Number of read pairs after 
length, quality, and SNF 
filtering

 Sequencing amount

 Sequencing run quality

 Library quality

Pct_Contaminating
_PhiX_Reads_in
_Filtered_R2

Percentage of read pairs after 
quality filtering that are 
aligned to the PhiX control

 Sequencing run quality

 Amount of PhiX spiked in

Pct_Q30_Bases_in
_Filtered_R2

Percentage of R2 bases with 
quality score >30, averaged 
across all read pairs retained 
after quality filtering

Sequencing quality

Pct_Assigned_to_Cell
_Labels

Percentage of read pairs 
containing a valid cell label

 Sequencing quality

 Library quality

Pct_Cellular_Reads
_Aligned_Uniquely_to
_Amplicons 

(Targeted only)

Percentage of read pairs 
containing a valid cell label 
and UMI that aligned 
uniquely to an amplicon 
presented in the panel 
reference

 Sequencing quality

 Library quality

Section/metric
 (continued)

Definition Major contributing factors
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Library Name of library Name of library

Pct_Cellular_Reads_Alig
ned_Uniquely_to_Annot
ated_Transcriptome

(WTA only)

Percentage of read pairs 
containing a valid cell label 
and UMI that aligned 
uniquely to a gene present in 
the transcriptome

 Sequencing quality

 Library quality

 Cell type

Pct_Cellular_Reads_Alig
ned_Uniquely_to_Other
_Genomic_Regions

Percentage of read pairs 
containing a valid cell label 
and UMI that aligning to 
other genomic regions or 
alignment is ambiguous

 Sequencing quality

 Library quality

 Cell type

Pct_Cellular_Reads_Alig
ned_Not_Unique

Percentage of read pairs 
containing a valid cell label 
and UMI that aligned 
multiple genes present in the 
transcriptome

 Sequencing quality

 Library quality

 Cell type

Pct_Cellular_Reads_Una
ligned

Percentage of read pairs 
containing a valid cell label 
and UMI that that is not 
aligned to a gene present in 
the transcriptome

 Sequencing quality

 Library quality

 Cell type

Section/metric
 (continued)

Definition Major contributing factors
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Reads and Molecules

Aligned_Reads_By
_Type

Number of filtered read pairs 
aligned to target type

 Sequencing quality

 Library quality

 Panel compatibility with 
sample composition

Total_Raw_Molecules Total number of molecules as 
defined by the unique 
combination of cell label, 
gene identity, and UMI

 Sequencing depth

 Panel compatibility with 
sample composition

Total_RSEC_Moleculesa Total number of molecules 
detected after the RSEC 
molecular identifier 
adjustment algorithm

 Sequencing depth

 Panel compatibility with 
sample composition

Total_DBEC_Moleculesa

(Targeted only)

Total number of molecules 
detected after RSEC and 
DBEC molecular identifier 
adjustment algorithms

 Sequencing depth

 Panel compatibility with 
sample composition

Mean_Raw_Sequencing
_Depth

Average number of read pairs 
per molecule before 
molecular identifier 
adjustment algorithms

Sequencing depth

Mean_RSEC
_Sequencing_Depth

Average number of read pairs 
per molecule after the RSEC 
molecular identifier 
adjustment algorithm

Sequencing depth

Mean_DBEC
_Sequencing_Depth

(Targeted only)

Average number of read pairs 
per molecule after RSEC and 
DBEC molecular identifier 
adjustment algorithms

Sequencing depth

Sequencing_Saturation Percentage of read pairs 
representing RSEC-adjusted 
molecules that are sequenced 
more than once

Sequencing depth

Section/metric
 (continued)

Definition Major contributing factors
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Pct_Cellular_Reads
_with_Amplicons
_Retained_by_DBEC

(Targeted only)

Percentage of read pairs with 
valid cell labels and gene 
alignment retained after the 
DBEC molecular adjustment 
algorithm

Sequencing depth

Target_Type Type of target in library 
(mRNA, AbSeq, or mRNA + 
AbSeq)

Library composition

Cells RSEC
Note:   Cells RSEC contains the metrics from cell label filtering based on molecule data 
generated from the RSEC molecular index adjustment algorithm.

Putative_Cell_Countb Number of cell labels 
detected by the cell label 
filtering algorithm

 Number of cells input and 
captured by cartridge 
workflow

 Bead handling

 Panel compatibility with 
sample composition

Pct_Reads_from
_Putative_Cells

Percentage of reads that are 
assigned to putative cells

 Cell viability

 Cartridge workflow 
performance

 Sequencing depth (for 
DBEC-derived metric only)

 Panel compatibility with 
sample composition

Mean_Reads_per_Cell Average number of reads 
representing the molecules 
detected in each cell

 Sequencing depth

 Panel compatibility with 
sample composition

Mean_Molecules_per

_Cell

Average number of molecules 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Section/metric
 (continued)

Definition Major contributing factors
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Median_Molecules_per
_Cell

Median number of molecules 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Mean_Targets_per_Cell Average number of targets 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Median_Targets_per
_Cell

Median number of targets 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Total_Targets_Detected Number of targets detected 
from all cells

 Sequencing depth

 Panel compatibility with 
sample composition

Target_Type Type of target in library 
(mRNA, AbSeq, or mRNA + 
AbSeq)

Panel composition

Cells DBEC
Note:   Cells contains the metrics from cell label filtering based on molecule data generated 
from the RSEC and DBEC molecular index adjustment algorithm.

Putative_Cell_Countb Number of cell labels 
detected by the cell label 
filtering algorithm

 Number of cells input and 
captured by cartridge 
workflow

 Bead handling

 Panel compatibility with 
sample composition

Pct_Reads_from
_Putative_Cells

Percentage of reads that are 
assigned to putative cells

 Cell viability

 Cartridge workflow 
performance

 Sequencing depth (for 
DBEC-derived metric only)

 Panel compatibility with 
sample composition

Section/metric
 (continued)

Definition Major contributing factors
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Mean_Reads_per_Cell Average number of reads 
representing the molecules 
detected in each cell

 Sequencing depth

 Panel compatibility with 
sample composition

Mean_Molecules_per

_Cell

Average number of molecules 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Median_Molecules_per
_Cell

Median number of molecules 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Mean_Targets_per_Cell Average number of targets 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Median_Targets_per
_Cell

Median number of targets 
detected per cell label

 Sequencing depth

 Panel compatibility with 
sample composition

Total_Targets_Detected Number of targets detected 
from all cells

 Sequencing depth

 Panel compatibility with 
sample composition

Target_Type Type of target in library 
(mRNA, AbSeq, or mRNA + 
AbSeq)

Panel composition

Targets

Number_of_Pass
_Targets

Number of targets with pass 
status: the targets have 
sufficient sequencing depth to 
be considered for adjustment 
by the DBEC molecular 
identifier algorithm

 Sequencing depth

 Panel compatibility with 
sample composition

Section/metric
 (continued)

Definition Major contributing factors
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Number_of
_Undersequenced
_Targets

Number of targets not having 
sufficient sequencing depth to 
be considered for adjustment 
by the DBEC molecular 
identifier algorithm

 Sequencing depth

 Panel compatibility with 
sample composition

Number_of_Targets
_in_Panel

The number of targets 
featured in the panel

Panel choice

Target_Type Type of target in library 
(mRNA, AbSeq, or mRNA + 
AbSeq)

Library composition

Section/metric
 (continued)

Definition Major contributing factors
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Sample Tags (If used in the experiment)

Sample_Tag_Filtered
_Reads

Number of filtered read pairs 
aligned to Sample Tags

 Sequencing depth

 Panel compatibility with 
sample composition

ST_Pct_Reads_from
_Putative_Cells

Percentage of Sample Tag 
reads that are assigned to 
putative cells

 Cell viability

 Sample Tag labelling and 
wash protocols

 Cartridge workflow 
performance

 Sequencing depth (for 
DBEC-derived metric only)

 Panel compatibility with 
sample composition

a. For more information on RSEC and DBEC molecular identifier adjustment algorithms, see 
Step 5. Annotate molecules (page 17).

b. For further information on how putative cells are defined in terms of the number of reads 
associated with true and noise cell labels, see Cell label filtering (page 55).

Section/metric
 (continued)

Definition Major contributing factors



Doc ID: 54169 Rev. 7.0

BD Single-Cell Genomics Bioinformatics Handbook50

BAM and BAM 
Index

BAM File: <sample_name>.final.BAM
BAM Index: <sample_name>.final.BAM.bai

BAM is an alignment file in binary format that is generated by the 
aligner. The aligner aligns R2 reads to the reference file and 
outputs tags related to alignment quality. This BAM file is sorted 
according to the alignment coordinates of R2 reads on each 
chromosome.

The BAM Index is the index file associated with the coordinate-
sorted BAM file.

The BD Rhapsody Analysis pipeline adds the following tags:

Tag Definition

CB A number between 1 and 963 (884,736) representing a unique cell 
label sequence (CB = 0 when no cell label sequence is detected)

MR Raw molecular identifier sequence

MA RSEC-adjusted molecular identifier sequence. If not a true cell, the 
raw UMI is repeated in this tag.

PT T if a poly(T) tail was found in the expected position on R1, or F if 
poly(T) was not found

CN Indicates if a sequence is derived from a putative cell, as determined 
by the cell label filtering algorithm (T: putative cell; x: invalid cell 
label or noise cell)

Note:  You can distinguish between an invalid cell label and a noise 
cell with the CB tag (invalid cell labels are 0).

ST The value is 1–12, indicating the Sample Tag of the called putative 
cell, or M for multiplet, or x for undetermined.
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Note:  A BAM file can be converted to a tab-delimited text file 
(SAM format) by using SAMtools (see samtools.sourceforge.net).

Data tables Files containing filtered data: 

<sample_name>_RSEC_MolsPerCell.csv

<sample_name>_RSEC_ReadsPerCell.csv

<sample_name>_DBEC_MolsPerCell.csv

<sample_name>_DBEC_ReadsPerCell.csv

Compressed files containing unfiltered data:

<sample_name>_RSEC_MolsPerCell_Unfiltered.csv.gz

<sample_name>_RSEC_ReadsPerCell_Unfiltered.csv.gz

<sample_name>_DBEC_MolsPerCell_Unfiltered.csv.gz

<sample_name>_DBEC_ReadsPerCell_Unfiltered.csv.gz

Eight Data Table .csv files, four filtered and four unfiltered, are 
output. They contain reads per gene per cell and molecules per 
gene per cell. 

TR

(WTA only)

Transcripts associated with the unique alignment. Transcripts are 
separated by “|”

TF

(WTA only)

Mean fragment length based on associated transcripts in TR tag. For 
transcripts with fragment lengths less than 1000 bp, only values less 
than 1000 bp are used in calculation of mean.

Tag Definition

http://samtools.sourceforge.net
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For example:

• Each row represents the number of reads or molecules in a cell 
for each gene in the panel (targeted) or gene detected (WTA). A 
cell is identified with a unique cell index number under 
Cell_Index.

• The cell index is sorted in descending order based on the total 
number of reads. The cell order in the four files is the same.

• Genes are sorted alphabetically.

• For PerCell.csv files: Reads and molecules are counted only if 
they have passed all pipeline filters and have been determined 
to be from putative cells.

• For PerCell_Unfiltered.csv.gz: The files contain unfiltered 
tables with cell labels of ≥5 reads.
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Note:  It is generally recommended to use 
<sample_name>_DBEC_MolsPerCell.csv for clustering analysis. 
Read counts for DBEC, read counts for RSEC, and molecule 
counts for RSEC are provided for reference. The RSEC files can be 
used when sequencing depth is so low that most genes do not pass 
the threshold for the DBEC molecular identifier adjustment 
algorithm to be applied; that is, low_depth in 
<sample_name>_UMI_Adjusted_Stats.csv. 

Expression data File: <sample_name>_Expression_Data.st 

Unfiltered file: <sample_name>_Expression_Data_Unfiltered.st.gz

Information is presented in sparse notation.

• Data.st: Reads and molecules are counted only if they have 
passed all pipeline filters and have been determined to be from 
putative cells.

• Unfiltered.st.gz: Compressed file containing all cell labels of 
≥5 reads.

Open the .st file in a text editor. 

Each row records counts for cell-gene combinations that have 
non-zero RSEC molecule counts. 
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For example:

Metric Definition

Cell_Index Unique cell index sorted by total number of reads per cell in 
descending order

Gene Genes in panel (targeted) or gene detected (WTA) listed in 
alphabetical order

RSEC_Reads Number of reads after the RSEC molecular identifier adjustment 
algorithm

Raw_Molecules Number of UMIs before molecular identifier adjustment 
algorithms

RSEC_Adjusted
_Molecules

Number of UMIs after RSEC molecular identifier adjustment 
algorithm

DBEC_Reads Number of reads remaining after the DBEC molecular identifier 
adjustment algorithm

DBEC_Adjusted
_Molecules

Number of UMIs after RSEC and DBEC molecular identifier 
adjustment algorithms
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Cell label filtering File: <sample_name>_Cell_Label_Filter.png

This is an example output plot from a high quality BD Rhapsody™ 
experiment:

The cell label filter plot and the second derivative curve (see Second 
derivative curve (page 56)) are outputs from the basic 
implementation of the second derivative analysis algorithm for 
determining putative cells. For details on determining putative 
cells, see Step 6. Determine putative cells (page 23).
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Second derivative 
curve

File: <sample_name>_Cell_Label_Second_Derivative_Curve.png

This plot is the second derivative of the cell label filter output plot:
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Putative cells origin File: <sample_name>_Putative_Cells_Origin.csv

The output lists the step in the cell label filtering algorithm that 
determined a particular cell is a putative cell. If the cell label is 
categorized as putative in the basic implementation of the second 
derivative analysis, it is labeled Basic. If the cell label is a recovered 
false negative in the refined implementation, it is labeled Refined. 
See Step 6. Determine putative cells (page 23). For example:
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UMI metrics File: <sample_name>_UMI_Adjusted_Stats.csv

The molecular identifier adjustment algorithms RSEC and DBEC 
are applied to each gene. The molecular identifier metrics file lists 
the metrics from RSEC and DBEC on a per-gene basis. For more 
information on RSEC and DBEC molecular identifier adjustment 
algorithms, see Step 5. Annotate molecules (page 17). For example:

Metric Definition

Gene Gene in panel (targeted) or gene detected (WTA) listed in 
alphabetical order

Status Gene status across all reads and molecules:
 Not detected: Gene is in the panel but was not detected, 

because it has zero reads

 Low depth: Minimum sequencing depth not achieved

 Pass: Minimum sequencing depth has been achieved

Raw_Reads Number of reads before molecular identifier adjustment 
algorithms

Raw_Molecules Number of UMIs before molecular identifier adjustment 
algorithms

Raw_Seq_Depth Number of raw reads ÷ the number of raw molecules

RSEC_Adjusted
_Molecules

Number of molecules detected after RSEC molecular identifier 
adjustment algorithm
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RSEC_Adjusted_Seq
_Depth

Number of raw reads ÷ the number of RSEC-adjusted molecules 

RSEC_Adjusted_Seq
_Depth_without
_Singletons

Number of raw reads ÷ the number of RSEC-adjusted molecules 
without considering molecules represented by only one read

DBEC_Minimum
_Depth

Threshold of RSEC depth for a molecule to be considered a 
putative molecule by DBEC 

DBEC_Adjusted_Reads Number of reads retained after DBEC molecular identifier 
adjustment algorithm

DBEC_Adjusted
_Molecules

Number of molecules retained after RSEC and DBEC

DBEC_Adjusted_Seq
_Depth

Number of DBEC-adjusted reads ÷ the number of molecules 
detected after RSEC and DBEC

Pct_Error_Reads Percentage of reads removed by DBEC molecular identifier 
adjustment algorithm

Error_Depth RSEC depth of molecules that are removed by DBEC correction

Metric
 (continued)

Definition
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Sample Tag metrics 
(sample 
multiplexing option 
selected)

File: <sample_name>_Sample_Tag_Metrics.csv 

The Sample Tag metrics file contains statistics on the reads aligned 
to each Sample Tag and cells called for each sample. For example:

File Description Major contributing factors

Sample_Tag List of the Sample Tags in the 
pipeline run

—

Sample_Name User-provided sample name —

Raw_Reads Number of reads aligned to 
each Sample Tag

Sample Tag sequencing 
amount

Pct_of_Raw_Reads Percentage of Sample Tag 
reads aligned to each Sample 
Tag

Sample Tag sequencing 
amount

Cells_Called Number of putative cells 
called for each Sample Tag

 Number of cells input and 
captured by cartridge 
workflow

 Sample Tag sequencing 
amount
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Pct_of_Putative_Cells
_Called

Percentage of putative cells 
called for each Sample Tag

 Number of cells input and 
captured by cartridge 
workflow

 Sample Tag sequencing 
amount

Raw_Reads_in_Called
_Cells

Number of Sample Tag reads 
that are assigned to called 
cells

Sample Tag sequencing 
amount

Mean_Reads_per
_Called_Cell

Average number of Sample 
Tag reads representing each 
called cell

Sample Tag sequencing 
amount

File
 (continued)

Description Major contributing factors
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Sample Tag calls 
(sample 
multiplexing option 
selected)

File: <sample_name>_Sample_Tag_Calls.csv

The Sample Tag calls file contains the determined sample call for 
every putative cell. Sample names that you provided are included 
in a separate column. The Sample Tag calls file can be used to 
annotate the main data tables, which contain results from all 
samples. For example:

File Description

Cell_Index Unique cell identifier

Sample_Tag List of the Sample Tags in the pipeline run

Sample_Name User-provided sample name
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Per sample folder 
(sample 
multiplexing option 
selected)

File: <sample_name> _Sample_Tag<number>.zip 

or <sample_name>_Multiplet_and_Undetermined.zip

Either zipped file includes:

• <sample_name> 
_Sample_Tag<number>_DBEC_MolsPerCell.csv 

• <sample_name> 
_Sample_Tag<number>_DBEC_ReadsPerCell.csv

• <sample_name> 
_Sample_Tag<number>_RSEC_MolsPerCell.csv

• <sample_name> 
_Sample_Tag<number>_RSEC_ReadsPerCell.csv

• <sample_name> _Sample_Tag<number>_Expression_Data.st

• ClusteringAnalysis/

Each sample with at least one called putative cell will generate a 
sample-specific folder containing data tables and a cluster analysis. 
The formats of the files are the same as described in Data tables 
(page 51) and Clustering analysis outputs (page 79). 

Data for putative cells that could not be assigned to a specific 
sample are found in the Multiplet and Undetermined folder.
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Assessing BD Rhapsody library quality with skim 
sequencing
Introduction Several output metrics from the BD Rhapsody Analysis pipeline 

can be evaluated while performing skim sequencing to assess 
library and sequencing run quality. Output metrics are stable at 
low sequencing depth (~2 million sequencing reads or higher).

Metrics for 
evaluation with 
skim sequencing

Read quality

 Pct_Reads_Too_Short

 Pct_Reads_Low_Base_Quality

 Pct_Reads_High_SNF

 Pct_Reads_Filtered_Out

Sequencing alignment

 Pct_Q30_Bases_in_Filtered_R2

 Pct_Assigned_to_Cell_Labels

 Pct_Cellular_Reads_Aligned_Uniquely_to_Amplicons

Cells detected

 Putative_Cell_Count (RSEC)a

 Pct_Reads_from_Putative_Cells (RSEC)b

 Putative_Cell_Count (DBEC)a

a. By metric definition, Putative_Cell_Count (RSEC) has the same 
value as Putative_Cell_Count (DBEC). Putative_Cell_Count 
(RSEC) and Putative_Cell_Count (DBEC) might vary by up to 
±5% from one sequencing run to the next due to differences in 
sequencing depth.

b. While Pct_Reads_From_Putative_Cells (RSEC) is stable at low 
sequencing depth, Pct_Reads_From_Putative_Cells (DBEC) is 
sequencing-depth dependent.
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Interpreting output metrics
Introduction This topic describes possible problems and recommended solutions 

for sequencing analysis issues. Issues with sequencing metrics 
might be related to issues that can be resolved in the experimental 
workflow. 

Percentage reads 
assigned to cell 
label and 
percentage cellular 
reads aligned 
uniquely to 
amplicons are low

Possible causes Recommended solutions

Low sequencing 
quality

 Ensure that the appropriate PhiX % is 
used for the type of sequencer used. 

 Ensure that the Illumina sequencing 
flow cell is not over-clustered. 

 Repeat the sequencing run if 
sequencing quality is suspected to be 
the reason.

Low library 
quality

 Ensure that the correct gene panel is 
used to amplify the sample and the 
correct amplification protocol and 
PCR product purification protocols 
are used. 

 Repeat amplification from leftover 
PCR1 products, if necessary. 
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High percentage 
assigned to cell 
labels but low 
percentage cellular 
reads aligned 
uniquely to 
amplicons

Possible causes Recommended solutions

Incorrect FASTA 
file panel used for 
mapping 

 If <50% alignment, then the wrong 
panel was likely used. 

 Verify that the correct panel reference 
file was used.

Incorrect number 
of sequencing 
cycles

Run at least 75 x 2 sequencing cycles. 
The total length of both reads must be at 
least 102 bp.

Low sequencing 
quality

Rerun sequencing, and use at least the 
minimum recommended concentration of 
PhiX.
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Low percentage 
reads mapped to 
putative cells Possible causes Recommended solutions

Some cells in the 
samples are not 
well represented by 
the panel. Their 
associated cell 
labels have very few 
detectable 
molecules, so they 
are classified as 
noise cell labels.

 Ensure that the panel matches the 
sample and species.

 Ensure that the panel of genes 
provides good representation across 
the cells in the sample tested if all 
cells are to be detected.

Lysis time too long Ensure that lysis time is exactly 
2 minutes and lysis buffer is cold.

Automated pipette 
settings are 
incorrect

Ensure that the correct setting is used 
for the specific step in the cartridge 
workflow.

Wrong buffer used 
for bead retrieval 
from the cartridge

Use only lysis buffer, as indicated in the 
protocol for bead retrieval.

Mixed species in 
experiment 

Ensure that the panel used contains 
genes that cover both species.

Excessive dead or 
dying cells

Proceed with the experiment if cell 
viability is ≥50%.

Very low bead 
loading density. The 
bead loading 
efficiency on the 
BD Rhapsody™ 
Scanner likely 
reported failed.

See bead loading density 
troubleshooting in the 
BD Rhapsody™ Single-Cell Analysis 
System Instrument User Guide 
(Doc ID: 214062) or the 
BD Rhapsody™ Express Single-Cell 
Analysis System Instrument User 
Guide (Doc ID: 214063).
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Batch effects 
across multiple 
libraries Possible causes Recommended solutions

Variations in 
sequencing depth 

Examine the status of each gene in 
<sample_name>_UMI_Adjusted
_Stats.csv across samples. If there are 
highly abundant genes with a pass 
status in one library but a low depth 
status in another, consider using 
<sample_name>_RSEC
_MolsPerCell.csv for analysis. Or, use 
<sample_name>_DBEC
_MolsPerCell.csv for analysis after 
removal of genes that do not have pass 
status in any of the libraries under 
consideration.

Variations in cell 
sample handling 
protocol

Use a similar cell sample handling 
protocol for all samples to be analyzed 
together, noting that temperature, 
duration of handling, and handling 
method can affect gene expression.

Differences in 
thermal cycling

For samples to be analyzed together, it 
is recommended to perform the PCR 
amplification of the Cell Capture Beads 
of those samples in parallel.

Low sequencing 
depth

Use <sample_name>_RSEC
_MolsPerCell.csv or use 
<sample_name>_DBEC
_MolsPerCell.csv after removal of 
genes that do not have pass status.
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Number of cells 
detected in 
sequencing is much 
lower than the 
expected cell 
number based on 
imaging results

Possible causes Recommended solutions

Some cells in the 
samples are not 
well represented by 
the panel. Their 
associated cell 
labels have very few 
detectable 
molecules, so they 
are classified as 
noise cell labels. 

 If all of the cells are to be detected, 
ensure that the panel of genes 
provides good representation across 
the cells in the sample tested.

 Ensure that the panel matches the 
sample and species.

Cell Capture Beads 
settled to the 
bottom of the tube 
before the start of 
PCR1.

Ensure that Cell Capture Beads are 
well suspended just before starting 
PCR1, and the thermal cycler lid is pre-
heated when the PCR tubes are placed 
on the thermal cycler.

Cell Capture Beads 
are lost during 
handling after 
cartridge use.

Ensure maximum recovery of Cell 
Capture Beads by using low retention 
tips and tubes. See product 
information in the BD Rhapsody™ 
Single-Cell Analysis System Instrument 
User Guide (Doc ID: 214062) or the 
BD Rhapsody™ Express Single-Cell 
Analysis System Instrument User 
Guide (Doc ID: 214063).
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3
BD Rhapsody™ Targeted

clustering analysis



Doc ID: 54169 Rev. 7.0

BD Single-Cell Genomics Bioinformatics Handbook74

Clustering Analysis Workflow
Workflow The BD Rhapsody™ Clustering Analysis app on the Seven Bridges 

Genomics platform or on a local installation clusters gene 
expression profiles of cells and is part of the BD Rhapsody 
Analysis pipeline. See Figure 1. While sequencing analysis is 
required before clustering analysis, clustering analysis can be 
performed independently.

The clustering algorithm is based on hierarchical clustering and 
identifies statistically significant clusters. To aid visualization, the 
bh-tSNE algorithm is also performed to project the high-
dimensional profiles to 2D space, using perplexity of 15 and 
dimension of 50. See van der Maaten, LJP, in References (page 86).
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Figure 1. The clustering analysis pipeline.
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Pre-processing of 
the gene 
expression matrix

A count matrix is log-transformed after a pseudo-count of 1 is 
applied to each entry. Correlation distance is used to describe the 
pairwise dissimilarity between each pair of cells. 

Hierarchical 
clustering

Hierarchical clustering iteratively merges the two closest clusters. 
All clusters are initiated as individual points with pairwise 
distances determined as described in Pre-processing of the gene 
expression matrix. Computing the distance between clusters is 
done by using complete linkage, and a full dendrogram is obtained.

Splitting and 
testing

Starting from the top of the dendrogram, the tree is split into two 
candidate sub-trees under the constraint that the intra-cluster 
median correlation of the two sub-trees should be higher than the 
inter-cluster median correlation. The split is scored with the 
smallest p-value when performing Welch's t-tests for every gene. 
All possible splits are performed, and their scores are recorded. 
Various thresholds of –log10(p-value) cutoffs are attempted as the 
split criterion to generate multiple versions of the clustering results. 
A graph of number of clusters versus –log10(p-value) cutoff can be 
plotted to inspect the stable cut of the dendrogram (see Figure 2). 
A stable cut is defined as a plateau on the curve over a range of 5 
on a log10-transformed p-value scale. Splitting results (sets of 
labels) corresponding to all stable cuts are kept and subjected to 
the next merging step. 
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Figure 2. Example results of the dendrogram splitting step. The 
stable numbers of clusters found are 4, 5, 7, and 9.

Merging Using the labels generated during splitting and testing, the merging 
phase determines if any of these clusters should be combined to 
form one cluster. The splitting phase can produce small clusters of 
a few data points each. This merging phase cleans up the smaller 
clusters by merging them with larger clusters. Specifically, all pairs 
of clusters are compared against each other, and then a p-value 
from Welch's t-test for each gene is generated. If the 
–log10(smallest p-value from all gene comparisons) is less than the 
threshold, which is defined as –log10(p-value threshold for the 
stable split)/2, the smaller cluster is merged with the larger one. 
The labels are updated, and all pairs are tested again until all pairs 
have the smallest p-value lower than the threshold.

4 clusters5 clusters
7 clusters

9 clusters
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Reporting the 
cluster assignment

Each cluster is denoted by an integer. Cells that cannot be merged 
with any other clusters (singletons) are given the label 
–1. The file, <sample_name>_<num_clusters>_Labels.csv, records 
the cluster assignment of each cell in the same order as in the 
loaded data table.

Reporting marker 
genes of each 
cluster

For each cluster, one-versus-rest tests are done using only the genes 
that have higher means in the cluster of interest. A table of 
important genes for each cluster is output as 
<sample_name>_<num_clusters>_Cluster_Features.csv along with 
additional information about each gene, including p-value, fold-
change, and mean expression level within the cluster. 

For each pair of clusters, Welch's t-test is performed to generate the 
gene list to differentiate two clusters the most. The list of results 
from all pairs is output as 
<sample_name>_<num_clusters>_Pairwise_Cluster_Features.csv.

To review clustering analysis metrics outputs, proceed to 
Reviewing clustering analysis output files (page 79).
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Reviewing clustering analysis output files
Before you begin Obtain the output files after running clustering analysis on the 

Seven Bridges Genomics platform or on a local installation. See the 
BD Single-Cell Genomics Analysis Setup User Guide 
(Doc ID: 47383).

Clustering analysis 
outputs

The BD Rhapsody Clustering Analysis app outputs one or more 
sets of four files (cluster labels, t-SNE projection labelled by cluster, 
cluster features, and pairwise cluster features) that describe levels 
of clustering:

Output File Content

t-SNE coordinates 
(page 80)

<sample_name>
_bh-tSNEcoordinates.csv

Coordinates of the 
t-SNE projection

Cluster labels (page 82) <sample_name>_<num_clusters>
_Labels.csv

Cluster membership 
per cell

t-SNE plot (page 83) <sample_name>_<num_clusters>
_tSNE.png 

Visualization of the 
t-SNE projection 
with cells colored by 
cluster labels

Over-represented genes 
in each cluster to all 
clusters (page 84)

<sample_name>_<num_clusters>
_Cluster_Features.csv

Top 50 statistically 
over-represented 
genes compared to 
all clusters
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t-SNE coordinates File: <sample_name>_bh-tSNEcoordinates.csv

The output is the projection of the data using the t-SNE algorithm. 
See der Maaten and Hinton in References (page 70).The output file 
contains coordinates that you can use to generate other 
visualizations. The order of cells/rows listed in the output file is in 
the same order of cells/rows listed in the input file. 

Over-represented genes 
in each cluster to every 
other cluster (page 85)

<sample_name>_<num_clusters>
_Pairwise_Cluster_Features.csv

Top 50 statistically 
over-represented 
genes compared to 
every other cluster

(Optional) 
Concatenated data 
tables (page 86)

<sample names>_MolsPerCell.csv or 
<sample names>_Expression_Data.st

Combined data 
table; output only if 
multiple inputs 
specified

(Optional) Sample IDs 
(page 86)

SampleIDs.csv Table of sample IDs; 
output only if 
multiple inputs 
specified 

Output
 (continued)

File Content
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For example:
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Cluster labels File: <sample_name>_<num_clusters>_Labels.csv

The output is the assignment of an integer representing the cluster 
label to each cell. The order of cells/rows listed in the output file is 
in the same order of cells/rows listed in the MolPerCell.csv input 
file. The value –1 means singletons, which are cells not assigned to 
any of the clusters. You can use this file and the coordinate file for 
additional clustering analysis. 

For example:
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t-SNE plot File: <sample_name>_<num_clusters>_tSNE.png

The output is a visualization of the t-SNE plot with cells colored 
according to cluster label. The visualization shows the number of 
clusters that have been identified from the analysis. 

Singletons are not associated with any cluster due to the low pair-
wise correlation between the singleton and other cells in the 
sample. Singletons are infrequent. 

For example: 
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Over-represented 
genes in each 
cluster to all 
clusters

File: <sample_name>_<num_clusters>_Cluster_Features.csv

The output is a list of up to the top 50 statistically over-represented 
genes in each cluster as compared to all other clusters. 

For example:

Metric Description

Cluster Identified cluster

Gene Over-expressed gene in this cluster compared to other clusters

p-Value This is –log10 of the p-value. The larger the value, the more 
significant the differential expression of the gene within the cluster.

Mean_of
_Expression

Mean number of molecules in all cells in that cluster

Fold_Change_of
_Expression

Fold change in mean expression of the gene in that cluster and all of 
the remaining cells
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Over-represented 
genes in each 
cluster to every 
other cluster

File: 
<sample_name>_<num_clusters>_Pairwise_Cluster_Features.csv

The output is a list of up to the top 50 statistically over-represented 
genes in each cluster as compared to every other cluster. The 
output shows the pairwise differential expression between all pairs 
of clusters:

Metric Description

Comparison The two clusters being compared

Gene Over-expressed gene in this cluster compared to the paired cluster

p-Value This is –log10 of the p-value. The larger the value, the more significant 
the differential level of the gene with the cluster.

Larger_Cluster The cluster with the higher mean expression level of the gene

Fold_Change_of
_Expression_for
_Larger_Cluster

Fold change of expression of the gene in that cluster and another 
cluster
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(Optional) 
Concatenated data 
tables

File: < sample names>_MolsPerCell.csv or 
<sample names>_Expression_Data.st

The output is a concatenated data table of all inputs (only if 
multiple data files are input).

(Optional) Sample 
IDs

File: SampleIDs.csv

The output is the Sample ID and the sample name associated with 
each molecule in the concatenated data file (only if multiple data 
files are input):

References
Clustering 
algorithm

Zhang JM, Fan J, Fan HC, Rosenfeld D, and Tse DN. An 
interpretable framework for clustering single-cell RNA-Seq 
datasets. BMC Bioinformatics. 2018;19:93–105. doi.org/10.1186/
s12859-018-2092-7.

t-SNE van der Maaten LJP. Accelerating t-SNE using Tree-Based 
Algorithms. Journal of Machine Learning Research. 
2014;15(Oct):3221–3245. 

https://doi.org/10.1186/s12859-018-2092-7
https://doi.org/10.1186/s12859-018-2092-7
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B

BAM An alignment file in binary format. A binary SAM file.

C

CIGAR Compact Idiosyncratic Gapped Alignment Report. A sequence of 
base lengths to indicate base alignments, insertions, and deletions 
with respect to the reference sequence. See samtools.github.io/hts-
specs/SAMv1.pdf.

CLS Cell label sequence.

D

DBEC Distribution-based error correction.

F

FASTA Text-based format that contains one or more DNA or RNA 
sequences.

FASTQ A file in standardized, text-based format that contains the output 
of read bases and per-base quality values from a sequencer.

L

L Common sequence.

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
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M

molecule A unique combination of a cell label, UMI sequence, and a gene. 
Without UMI adjustment methods, it is called raw molecule. With 
RSEC UMI adjustment, it is called RSEC-adjusted molecule. With 
additional DBEC UMI adjustment, it is called DBEC-adjusted 
molecule.

P

PhiX Control library used for sequencing runs. 

R

R1 reads Contains information about the cell label and UMI.

R2 reads Contains information about the gene.

RSEC Recursive substitution error correction.

S

SAM Tab-delimited text file with sequence alignment data.

singlet A putative cell where more that 75% of sample tag reads are from 
a single tag.

singleton Clustering: Cell not assigned to any of the clusters. UMI 
correction/adjustment: Molecule that is represented by only one 
read. 
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U

UMI Unique Molecular Identifier. A string of eight randomers 
immediately downstream of the cell label sequence (CLS) 3 of the 
R1 read that is used to uniquely label a molecule.
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